21 research outputs found

    High Abundances of Species in Protected Areas in Parts of their Geographic Distributions Colonized during a Recent Period of Climatic Change

    Get PDF
    It is uncertain whether Protected Areas (PAs) will conserve high abundances of species as their distributions and abundances shift in response to climate change. We analyzed large datasets for 57 butterfly and 42 odonate species (including four that have recently colonized Britain). We found that 73 of 94 species with sufficient data for analysis were more abundant inside than outside PAs in the historical parts of their British distributions, showing that PAs have retained high conservation value. A significant majority (61 of 99 species) was also more abundant inside PAs in regions they have colonized during the last 30–40 years of climate warming. Species with relatively high abundances inside PAs in long-established parts of their distributions were also disproportionately associated with PAs in recently colonized regions, revealing a set of relatively PA-reliant species. Pas, therefore, play a vital role in the conservation of biodiversity as species’ ranges become more dynamic

    The value of carbon sequestration and storage in coastal habitats

    Get PDF
    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000–2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000–2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000–2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined

    Social Value of Marine and Coastal Protected Areas in England and Wales.

    Get PDF
    The U.K. government is committed to establishing a coherent network of marine protected areas by 2012 and the recentMarine and Coastal Access Act, 2009 will designate marine conservation zones and provide wider access rights to the coast. To fulfill these goals, this article argues the need for a clearer, shared understanding of the social value of protected areas in creating new designations and managing existing ones. Although marine and coastal environments attract many people and are vitally important in terms of realized and potential social value, the majority of the public in the United Kingdom lacks understanding and awareness regarding them. Combined with this, the social value of marine and coastal protected areas (MCPAs) have been largely ignored relative to conservation and economics, with the latter invariably taking precedence in environmental policymaking. Social value reflects the complex, individual responses that people experience in a given place. Many reasons determine why one area is valued above another, and this research investigates the social value of MCPAs from a practitioner’s perspective through a series of interviews. Understanding why we “socially” value MCPAs will ultimately equip managers with an informed understanding of these spaces, influence management decisions, and, potentially, policymaking. This article defines social value in the context of MCPAs in England and Wales from a practitioner perspective, explores key concepts, and suggests possible improvements in decision-making

    Social enterprises with environmental objectives: saving traditional orchards in England and Germany

    Get PDF
    Social enterprises (SE) re-invest their profits towards a social mission. They have proliferated as post-industrial economies try to meet social need with limited state funding. Scholarship has expanded accordingly, although SEs with primarily environmental objectives have been neglected. This article examines how SEs, in regions noted for wildlife-rich orchards, fund nature conservation by marketing juice and/or cider, thereby attempting to revive economic possibilities for this traditional land use. A common thread between the SEs is their initiation by conservation organisations, and it is possible to group them within models of market intervention. Three models in particular are examined that reveal different approaches and success in orchard conservation. SE scholarship is marked by a wealth of case studies, and to avoid simply adding to this richness, the paper revisits Jen Beckert’s ideas on the social order of markets. His theory that actors strive for stability through forms of co-ordination in dynamic market ‘fields’ is applied to SEs aiming to produce positive conservation outcomes – or environmental order – from their market interventions. Within limits, social order advances understanding of environmental SE by identifying the multiple challenges they juggle, and revealing the environmental outcomes of SE engagement in markets

    Assessing soil compaction and micro-topography impacts of alternative heather cutting as compared to burning as part of grouse moor management on blanket bog

    Get PDF
    Background. Over 25% of the UK land area is covered by uplands, the bulk of which are comprised of blanket bog. This not only contains most of the UK’s terrestrial carbon stocks, but also represents 15% of this globally rare habitat. About 30% of UK blanket bog is managed for red grouse by encouraging ling heather (Calluna vulgaris) with rotational burning, which has been linked to habitat degradation, with reduced carbon storage and negative impacts on water storage and quality. Alternative cutting is currently being pursued as a potential restoration management. However, the often used heavy cutting machinery could cause considerable compaction and damage to the peat surface. Two particular issues are (i) a potential increase in bulk density reducing water storage capacity (i.e. less pore volume and peat depth), and (ii) a possible reduction of the micro-topography due to cutting off the tops of hummocks (i.e. protruding clumps or tussocks of sedges). Methods. We set up a fully replicated field experiment assessing cutting versus burn management impacts on peat physical and surface properties. Both managements reflected commonly used grouse moor management practice with cutting using heavy tractors fitted with load distributing double wheel and tracks (lowering ground pressure), whilst burning was done manually (setting heather areas alight with flame torches). We assessed management impacts on peat depth, bulk density and peat surface micro-topography which either included pre-management measurements or plot-level data for uncut plots. Total peat depth and bulk density in four 5 cm sections within the top 50 cm was assessed. Micro-topography was determined as the standard deviation of the height offsets measured over several plot transects in relation to the plot peat surface level at the start and end points of each transect. Results. Despite an anticipated compaction from the heavy machinery used for cutting, the peat showed resilience and there was no lasting plot-level impact on either peat depth or bulk density. Notably, bulk density showed differences prior to, and thus unrelated to, management, and an overall increasing bulk density, even in uncut plots. However, cutting did reduce the plot micro-topography by about 2 cm, mostly due to removing the tops of hummocks, whereas burnt plots did not differ from uncut plots. Discussion. Cutting is suggested as a suitable alternative to burning on grouse moors, although compaction issues might be site specific, depending on the nature of the peat, the machinery used and impacts at resting and turning points (which were not assessed). However, any observed bulk density differences could reflect natural changes in relation to changes in peat moisture, requiring adequate experimental comparisons. Moreover, where micro-topography is a priority, cutting equipment might need to consider the specific ground conditions, which could involve adjusting cutting height and the type of cutting machinery used

    Responses of fishes and lampreys to the re-creation of meanders in a small English chalk stream

    Get PDF
    River rehabilitation initiatives have become commonplace in European water courses as a result of European Union Water Framework Directive requirements. However, the short‐term responses of fishes to such work have thus far been varied, with some river rehabilitation efforts resulting in demonstrable improvements in diversity and size structure, whereas others have resulted in little or no change. Electrofishing and channel character surveys were conducted annually between 2009 and 2014 on a reach of the River Glaven (North Norfolk, UK) before and after rehabilitation work (embankment removal in 2009 and re‐meandering in 2010) as well as on a control reach immediately upstream. To assess the effects of rehabilitation work, before‐after‐control‐impact analysis tested for changes in channel character (geomorphology, substratum composition, and mesohabitat structure) and in fish species richness, relative abundance, population density, and size structure (calculated after fish data entry into the UK Environment Agency's National Fisheries Population Database). Following re‐meandering work (i.e., treatment), habitat heterogeneity and depth variation increased in the treatment reach, but fish responses were not significant except for biomass and density increases of brown trout Salmo trutta and abundance decreases of European eel Anguilla anguilla, in the treatment but not the control reach. These results are consistent with comparable river rehabilitation initiatives elsewhere, and they suggest that larger‐scale rehabilitations are probably needed to produce greater increases in fish density and diversity. It is recommended that future rehabilitation initiatives address catchment‐scale factors that can enhance ecosystem recovery, for example, removal of barriers to colonization, and increases in connectivity and water quality issues linked to eutrophication, elevated fine sediment inputs, and various pollutants

    Addressing Criticisms of Large-Scale Marine Protected Areas

    Get PDF
    Designated large-scale marine protected areas (LSMPAs, 100,000 or more square kilometers) constitute over two-thirds of the approximately 6.6% of the ocean and approximately 14.5% of the exclusive economic zones within marine protected areas. Although LSMPAs have received support among scientists and conservation bodies for wilderness protection, regional ecological connectivity, and improving resilience to climate change, there are also concerns. We identified 10 common criticisms of LSMPAs along three themes: (1) placement, governance, and management; (2) political expediency; and (3) social–ecological value and cost. Through critical evaluation of scientific evidence, we discuss the value, achievements, challenges, and potential of LSMPAs in these arenas. We conclude that although some criticisms are valid and need addressing, none pertain exclusively to LSMPAs, and many involve challenges ubiquitous in management. We argue that LSMPAs are an important component of a diversified management portfolio that tempers potential losses, hedges against uncertainty, and enhances the probability of achieving sustainably managed oceans

    Connectivity and zebra mussel invasion offer short‐term buffering of eutrophication impacts on floodplain lake landscape biodiversity

    Get PDF
    Aim To investigate if connectivity and zebra mussel (Dreissena polymorpha) occurrence can mitigate effects of eutrophication in a lowland lake landscape. Location Upper Lough Erne, Northern Ireland, UK. Methods Data on environment, macrophytes and invertebrates were assembled for three basins of a large central lake and its satellite floodplain lakes via field surveys and palaeolimnological analyses. Space–time interaction analyses of palaeoecological data were compared pre‐1950 and post‐1950. Multivariate analyses examined how connectivity, environment and zebra mussels influenced contemporary lake communities, and explain their divergence from historical communities in the past. Results Pre‐1950, we found high community variation across sites and low within‐lake variation in macrophytes, but progressive eutrophication accentuated within‐lake community variation after 1950. Partitioning analysis showed larger effects of connectivity than nutrient enrichment on contemporary macrophyte composition, while local effects structured invertebrate communities. Three clusters of lakes were revealed according to variation in macrophyte composition, isolation from the central lake and nutrient enrichment: Group 1– the central lake and six nearby lakes were meso‐eutrophic (TP = 66.7 ± 47.6 ÎŒg/L; TN = 0.79 ± 0.41 mg/L) and had the highest zebra mussel abundances and organismal biodiversity; Group 2– Eight eutrophic (TP = 112±36.6 ÎŒg/L; TN = 1.25 ± 0.5 mg/L) and connected lakes; Group 3– Seven isolated and hypertrophic (TP = 163.2 ± 101.5 ÎŒg/L; TN = 1.55 ± 0.3 mg/L) lakes. Pre‐1950 palaeolimnological data for macrophytes and invertebrates for 5 lakes and a basin in the central lake most resembled extant lake communities of Group 1. However, palaeo‐records revealed that macrophytes and invertebrates subsequently converged towards those of Groups 2 and 3. Main conclusions Our study reveals that the central “mother” lake acts as a hub for preserving biodiversity via shared hydrological connectivity with satellite lakes and high zebra mussel abundances. These may buffer the impoverishing effects of eutrophication and sustain unexpectedly high biodiversity in the short term. Such protective buffering, however, cannot be relied upon indefinitely to conserve biodiversity
    corecore